

ngineerir

17EC36

Third Semester B.E. Degree Examination, Aug./Sept. 2020 Engineering Electromagnetics

Time: 3 hrs.

USN

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- State and explain Coulomb's Law in vector form. 1 (05 Marks) a. Define electric field intensity and electric flux density. (05 Marks) b. c. Let a point charge $Q_1 = 25nC$ be located at $P_1(4, -2, 7)$ and a charge $Q_2 = 60nC$ be at $P_2(-3, 4, -2).$ i) If $\in = \in_0$, find electric field intensity (E) at P₃(1, 2, 3) ii) At what point on the Y axis is $E_X = 0$. (10 Marks) Given a 60µC point charge located at the origin, find the total electric flux passing through 2 a. i) That portion of the sphere r = 26 cm bounded by $0 < \theta < \frac{\pi}{2}$ and $0 < \phi < \frac{\pi}{2}$ ii) The closed surface defined by $\rho = 26$ cm and $z = \pm 26$ cm. (07 Marks) Derive an expression for electric field intensity at a distant point due to infinite line charge b. distribution. (08 Marks) c. A uniform volume charge density of 80μ C/m³ is present throughout the region 8 mm < r < 10 mm. Let $\rho_r = 0$ for 0 < r < 8 mm. i) Find the total charge inside the spherical surface r = 10 mm ii) Find D_r at r = 10mmiii) If there is no charge for r > 10mm, find D_r at r = 20mm. (05 Marks) Module-2 a. State and prove Gauss law. 3 (05 Marks) b. Determine the work done in carrying a $2\mu C$ charge from (2, 1, -1) to (8, 2, -1) in the field $\vec{E} = ya_x + xa_y along$ the parabola $x = 2y^2$ ii) the hyperbola $x = \frac{8}{(7-3y)}$. (08 Marks) c. Determine an expression for the volume charge density associated with each D field following : i) $\vec{D} = \frac{4xy}{z}a_x + \frac{2x^2}{z}a_y + \frac{2x^2y}{z^2}a_z$
- Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

(07 Marks)

ii) $\vec{D} = z \sin \phi a_{\rho} + z \cos \phi a_{\phi} + \rho \sin \phi a_z$

iii) $\dot{\mathbf{D}} = \sin\theta\sin\phi a_{\gamma} + \cos\theta\sin\phi a_{\theta} + \cos\phi a_{\phi}$.

17EC36

OR

- 4 a. Two uniform line charges, 8nC/m each, are located at x= 1, z = 2 and at x = -1, y = 2 in free space. If the potential at the origin is100V, find V at P(4, 1, 3). (08 Marks)
 - b. Within the cylinder $\rho = 2$, 0 < z < 1, the potential is given by $v = 100 + 50\rho + 150\rho \sin \phi V$. Find V, \vec{E} , \vec{D} and ρ_V at P(1, 60°, 0.5) in free space. (08 Marks)
 - c. Derive equation of continuity.

Module-3

- 5 a. Derive Poisson's and Laplaces equation.
 - b. A uniform volume charge has constant density $\rho_V = \rho_0 C/m^3$, and fills the region r < a, in which permittivity ' \in ' is assumed. A conducting spherical shell is located at r = a and is held at ground potential. Find :
 - i) the potential everywhere
 - ii) the electric field intensity, \acute{E} everywhere.
 - c. Explain Biot-Savart's law.

OR

- 6 a. State and prove Stoke's theorem.
 - b. A solid conductor of circular cross-section with a radius of 5mm has a conductivity that varies with radius. The conductor is 20m long, and there is a potential difference of 0.1V DC between its two ends. Within conductor, $H = 10^5 \rho^2 a_{\phi} A/m$.
 - i) Find ' σ ' conductivity as a function ρ charge density
 - ii) What is the resistance between the two ends?
 - c. A straight conductor of length '2L' carrying a current 'I' coincides with z direction. Obtain an expression for vector magnetic potential at a point in a bisecting plane of the conductor. \rightarrow

Also find magnetic flux density B at that point.

Module-4

7 a. The point charge Q = 18nC has a velocity of 5×10^6 m/s in the direction :

 $a_V = 0.60a_x + 0.75a_y + 0.30a_z$

Calculate the magnitude of the force exerted on the charge by the field :

- i) $\vec{B} = -3a_x + 4a_y + 6a_z mT$
- ii) $\vec{E} = -3a_x + 4a_y + 6a_z kV/m$
- iii) \vec{B} and \vec{E} acting together. (07 Marks)
- b. Obtain an expression for the force between differential current elements. (07 Marks)
- c. Write a note on magnetic boundary conditions.

(05 Marks)

(06 Marks)

(09 Marks)

(05 Marks)

(08 Marks)

(07 Marks)

(06 Marks)

(04 Marks)

OR

- 8 Find the magnetic field intensity 'H' inside a magnetic material, given the following : a.
 - $\mu=1.5\times 10^{-5}~H/m$ i) M = 100 A/m,
 - $\chi_m = 15.$ ii) $B = 200 \mu T$,
 - b. Derive an expression for energy stored in the magnetic field.
 - c. A current element $I_1 dI_1 = 10^{-4} a_z$ A.m is located at $P_1(2, 0, 0)$ another current element $I_2 dI_2 = 10^{-6} [a_x - 2a_y + 3a_z]$ A.m is located at P_2 (-2, 0, 0) and both are in free space :
 - i) Find force exerted on $I_2 dI_2$ by $I_1 dI_1$
 - ii) Find force exerted on $I_1 dl_1$ by $I_2 dl_2$.

(08 Marks)

(06 Marks)

(06 Marks)

Module-5

- Define Faraday's law. Derive Maxwell's equation from Faraday's law in point form. 9 a.
 - (07 Marks) b. Let $\mu = 3 \times 10^{-5}$ H/m, $\epsilon = 1.2 \times 10^{-10}$ F/m, and $\sigma = 0$ everywhere. If $\vec{H} = 2\cos(10^{10}t - \beta x)a_zA/m$, use Maxwell's equations to obtain expressions for \vec{D} and \vec{E} (06 Marks) (07 Marks)

c. Derive wave equations in free space for a uniform plane wave.

OR

- State and prove Poynting's theorem. 10 a.
 - Discuss wave propagation in good conductor. b.

- A certain lossless material has $\mu_r = 4$ and $\epsilon_r = 9$. A 10MHz uniform plane wave is c. propagating in the α_y direction with $E_{x_0} = 400$ V/m and $E_{y_0} = E_{z_0} = 0$ at P(0.6,0.6,0.6) at
 - t = 60ns. Find ' β ', λ , ν_p and η .

(08 Marks)

- (07 Marks)
- (05 Marks)