

17EC36

Third Semester B.E. Degree Examination, Aug./Sept. 2020 Engineering Electromagnetics

Time: 3 hrs .
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State and explain Coulomb's Law in vector form.
(05 Marks)
b. Define electric field intensity and electric flux density.
(05 Marks)
c. Let a point charge $\mathrm{Q}_{1}=25 \mathrm{nC}$ be located at $\mathrm{P}_{1}(4,-2,7)$ and a charge $\mathrm{Q}_{2}=60 \mathrm{nC}$ be at $\mathrm{P}_{2}(-3,4,-2)$.
i) If $\in=\epsilon_{0}$, find electric field intensity (E) at $\mathrm{P}_{3}(1,2,3)$
ii) At what point on the Y axis is $\mathrm{E}_{\mathrm{X}}=0$.
(10 Marks)

OR
2 a. Given a $60 \mu \mathrm{C}$ point charge located at the origin, find the total electric flux passing through i) That portion of the sphere $r=26 \mathrm{~cm}$ bounded by $0<\theta<\frac{\pi}{2}$ and $0<\phi<\frac{\pi}{2}$
ii) The closed surface defined by $\rho=26 \mathrm{~cm}$ and $\mathrm{z}= \pm 26 \mathrm{~cm}$.
(07 Marks)
b. Derive an expression for electric field intensity at a distant point due to infinite line charge distribution.
(08 Marks)
c. A uniform volume charge density of $80 \mu \mathrm{C} / \mathrm{m}^{3}$ is present throughout the region $8 \mathrm{~mm}<\mathrm{r}<10 \mathrm{~mm}$. Let $\rho_{\mathrm{r}}=0$ for $0<\mathrm{r}<8 \mathrm{~mm}$.
i) Find the total charge inside the spherical surface $\mathrm{r}=10 \mathrm{~mm}$
ii) Find D_{r} at $r=10 \mathrm{~mm}$
iii) If there is no charge for $r>10 \mathrm{~mm}$, find D_{r} at $r=20 \mathrm{~mm}$.
(05 Marks)

Module-2

3 a. State and prove Gauss law.
(05 Marks)
b. Determine the work done in carrying a $2 \mu \mathrm{C}$ charge from $(2,1,-1)$ to $(8,2,-1)$ in the field $\vec{E}=y_{x}+x a_{y}$ along
i) the parabola $x=2 y^{2}$
ii) the hyperbola $x=\frac{8}{(7-3 y)}$.
(08 Marks)
c. Determine an expression for the volume charge density associated with each $\overrightarrow{\mathrm{D}}$ field following :
i) $\vec{D}=\frac{4 x y}{z} a_{x}+\frac{2 x^{2}}{z} a_{y}+\frac{2 x^{2} y}{z^{2}} a_{z}$
ii) $\vec{D}=z \sin \phi a_{\rho}+z \cos \phi a_{\phi}+\rho \sin \phi a_{z}$
iii) $\vec{D}=\sin \theta \sin \phi a_{\gamma}+\cos \theta \sin \phi a_{\theta}+\cos \phi a_{\phi}$.
(07 Marks)

17EC36

OR
4 a. Two uniform line charges, $8 \mathrm{nC} / \mathrm{m}$ each, are located at $\mathrm{x}=1, \mathrm{z}=2$ and at $\mathrm{x}=-1, \mathrm{y}=2$ in free space. If the potential at the origin is 100 V , find V at $\mathrm{P}(4,1,3)$.
(08 Marks)
b. Within the cylinder $\rho=2,0<z<1$, the potential is given by $\mathrm{v}=100+50 \rho+150 \rho \sin \phi \mathrm{~V}$. Find V, \vec{E}, \vec{D} and ρ_{V} at $P\left(1,60^{\circ}, 0.5\right)$ in free space.
(08 Marks)
c. Derive equation of continuity.
(04 Marks)

Module-3

5 a. Derive Poisson's and Laplaces equation.
(05 Marks)
b. A uniform volume charge has constant density $\rho_{\mathrm{V}}=\rho_{0} \mathrm{C} / \mathrm{m}^{3}$, and fills the region $\mathrm{r}<\mathrm{a}$, in which permittivity ' ϵ ' is assumed. A conducting spherical shell is located at $\mathrm{r}=\mathrm{a}$ and is held at ground potential. Find :
i) the potential everywhere
ii) the electric field intensity, $\overrightarrow{\mathrm{E}}$ everywhere.
(09 Marks)
c. Explain Biot-Savart's law.
(06 Marks)

OR
6 a. State and prove Stoke's theorem.
b. A solid conductor of circular cross-section with a radius of 5 mm has a conductivity that varies with radius. The conductor is 20 m long, and there is a potential difference of 0.1 V DC between its two ends. Within conductor, $H=10^{5} \rho^{2} \mathrm{a}_{\phi} \mathrm{A} / \mathrm{m}$.
i) Find ' σ ' conductivity as a function ρ charge density
ii) What is the resistance between the two ends?
(08 Marks)
c. A straight conductor of length ' 2 L ' carrying a current ' I' coincides with z direction. Obtain an expression for vector magnetic potential at a point in a bisecting plane of the conductor.

Also find magnetic flux density B at that point.
(07 Marks)

Module-4

7 a. The point charge $\mathrm{Q}=18 \mathrm{nC}$ has a velocity of $5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in the direction :
$\mathrm{a}_{\mathrm{V}}=0.60 \mathrm{a}_{\mathrm{x}}+0.75 \mathrm{a}_{\mathrm{y}}+0.30 \mathrm{a}_{\mathrm{z}}$
Calculate the magnitude of the force exerted on the charge by the field :
i) $\vec{B}=-3 a_{x}+4 a_{y}+6 a_{z} m T$
ii) $\overrightarrow{\mathrm{E}}=-3 \mathrm{a}_{\mathrm{x}}+4 \mathrm{a}_{\mathrm{y}}+6 \mathrm{a}_{\mathrm{z}} \mathrm{kV} / m$
iii) \vec{B} and \vec{E} acting together.
b. Obtain an expression for the force between differential current elements.
c. Write a note on magnetic boundary conditions.

17EC36

OR

8 a. Find the magnetic field intensity ' H ' inside a magnetic material, given the following :
i) $\mathrm{M}=100 \mathrm{~A} / \mathrm{m}, \quad \mu=1.5 \times 10^{-5} \mathrm{H} / \mathrm{m}$
ii) $B=200 \mu \mathrm{~T}, \quad \chi_{\mathrm{m}}=15$.
b. Derive an expression for energy stored in the magnetic field.
c. A current element $\mathrm{I}_{1} \mathrm{dl}_{1}=10^{-4} \mathrm{a}_{\mathrm{z}}$ A.m is located at $\mathrm{P}_{1}(2,0,0)$ another current element $\mathrm{I}_{2} \mathrm{dl}_{2}=10^{-6}\left[\mathrm{a}_{\mathrm{x}}-2 \mathrm{a}_{\mathrm{y}}+3 \mathrm{a}_{\mathrm{z}}\right]$ A.m is located at $\mathrm{P}_{2}(-2,0,0)$ and both are in free space :
i) Find force exerted on $\mathrm{I}_{2} \mathrm{dl}_{2}$ by $\mathrm{I}_{1} \mathrm{dl}_{1}$
ii) Find force exerted on $\mathrm{I}_{1} \mathrm{dl}_{1}$ by $\mathrm{I}_{2} \mathrm{dl}_{2}$.
(08 Marks)

Module-5

9 a. Define Faraday's law. Derive Maxwell's equation from Faraday's law in point form.
(07 Marks)
b. Let $\mu=3 \times 10^{-5} \mathrm{H} / \mathrm{m}, \in=1.2 \times 10^{-10} \mathrm{~F} / \mathrm{m}$, and $\sigma=0$ everywhere. If $\vec{H}=2 \cos \left(10^{10} t-\beta x\right) a_{z} A / m$, use Maxwell's equations to obtain expressions for \vec{D} and \vec{E}
c. Derive wave equations in free space for a uniform plane wave.
(06 Marks)
(07 Marks)

OR

10 a. State and prove Poynting's theorem.
b. Discuss wave propagation in good conductor.
c. A certain lossless material has $\mu_{\mathrm{r}}=4$ and $\epsilon_{\mathrm{r}}=9$. A 10 MHz uniform plane wave is propagating in the α_{y} direction with $\mathrm{E}_{\mathrm{x}_{0}}=400 \mathrm{~V} / \mathrm{m}$ and $\mathrm{E}_{\mathrm{y}_{0}}=\mathrm{E}_{\mathrm{z}_{0}}=0$ at $\mathrm{P}(0.6,0.6,0.6)$ at $t=60 \mathrm{~ns}$. Find ' β ', λ, v_{p} and η.
(05 Marks)

